一、数据产品与数据分析区别?
数据产品是根据数据得出的产品,如统计率。数据分析是对数据产品进行研究,得出一定的结果
二、商业智能、大数据与数据分析有何区别?
简单来说,数据分析流程是这样的:明确问题->分析数据->可视化数据->提出建议。商业智能BI可以看作数据分析步骤里数据可视化这一步。
也可以复杂的来说,发你几个内容系统看下吧,囊括了很多入门需要的基本概念。比如下面这几个问题,你都能回答上来吗?
如果回答不上来,看下这个数据分析入行指南:助你互联网行业发展有「钱」途
或者也可以先在【知乎数据分析3天训练营】体验一下数据分析学习,看看自己到底适不适合,喜不喜欢数据分析。这个课程也是我结合国内外互联网大厂的一线业务案例设计,和谷歌、滴滴等数据专家合作,讲解常用工具和框架逻辑,技能和思维双线并行,非常适合0基础小白入门:
另外,如果真的想要学习商业智能BI,可以看下面我整理的商业智能Power BI免费资料。
1、免费教程《7天学会商业智能BI 》
知识点:
什么是报表?
如何设计报表?
免费教程:https://www.zhihu.com/question/292250705/answer/1682708143
知识点:
什么是商业智能BI?
什么是Power BI?
如何安装Power BI?
免费教程:https://zhuanlan.zhihu.com/p/258419167
知识点:
如何从 Excel 获取数据?
如何从数据库获取数据?
如何编辑数据?
如何行列转置?
免费教程:https://zhuanlan.zhihu.com/p/319837633
知识点:
如何管理数据关系?
创建计算列
隐藏字段
创建度量值
创建计算表
浏览基于时间的数据
免费教程:https://zhuanlan.zhihu.com/p/318074361
知识点:
如何可视化数据?
如何创建切片器?
如何绘制地图?
常用图表可视化
页面布局和格式设置
免费教程:https://zhuanlan.zhihu.com/p/330675062
知识点:通过一个项目,手把手学会你如何设计、制作自动化报表
免费教程:https://zhuanlan.zhihu.com/p/349416748
知识点:
如何保存报表?
如何发布报表?
如何制作优秀报表?
免费教程:https://zhuanlan.zhihu.com/p/350464983
不过BI毕竟只是工具,数据分析还得有思维,如果事先没有一个完善的分析思路,后续数据获取、数据清洗和数据分析都会出现偏差。但数据分析思维需要长期针对性训练,很多想要快速入行的人都卡在了这一关。
针对这样的需求,我在知乎新上线的数据分析课程格外注重数据分析思维的构建,采用案例+理论的方式来讲解常用模型+逻辑框架,案例都来自我在IBM的数据分析经验和国内互联网大厂的一线业务,还采访了多位大厂数据分析师,希望能让大家在短时间内搭建起较为完备而实用的数据分析思维,有需要的话点下面链接即可:
三、meta分析与数据挖掘区别?
Meta分析和数据挖掘是两种不同的数据分析方法,它们的目的和应用领域也有所不同。
Meta分析是一种系统性地分析并综合多个已有研究结果的方法。在Meta分析中,研究者会收集多个研究的数据和研究结果,并将其进行汇总和统计分析,进而获得更加准确和可靠的结论和洞察,帮助人们更好地理解现象和问题。Meta分析通常应用于医学和社会科学等领域,以确定不同研究结果的一致性、探究异质性、描述研究间关系等。
数据挖掘是指从大量数据中提炼出有价值的信息和规律的过程,通常采用统计学、机器学习和深度学习等方法,以发现数据中的隐藏模式、趋势、关联性和异常等信息。数据挖掘可以应用于多个领域,例如商业、金融、医疗、教育等,帮助人们做出更加准确预测、优化流程、产品开发、市场分析等。
虽然Meta分析和数据挖掘都基于对数据进行分析和处理,但二者的目的和应用领域存在明显差异。Meta分析更注重多个研究结果的汇总和统计分析,要考虑数据来源和数据质量等问题;数据挖掘则更专注于数据本身,希望从数据中发掘出有用信息和规律,以发现潜在的商业、科学或社会价值。
四、实证分析与数据分析的区别与联系?
实证分析与数据分析的区别在于使用方法的不同,实证分析可以采用统计学的多元回归以及其他方法进行大样本检验,而数据分析可以用简单的统计方法进行描述分析,实证分析与数据分析的联系在于,它们都是采用大样本进行数据挖掘。
五、数据治理和数据分析区别?
数据治理和数据分析是两个不同的概念,主要区别如下:
1. 定义:数据治理(Data Governance)是一种管理规划、策略、流程与技术的框架,旨在确保企业数据安全、准确性,避免损失和隐私泄露。而数据分析(Data Analysis) 是指使用统计学方法以及信息科技来收集、整理、处理和解释数据的过程。
2. 目标:数据治理的目的是确保数据质量和数据完整性,并规范对数据的访问和利用,在满足法规合规需求的情况下使组织获得最大价值。而数据分析目的则是揭示数据背后隐藏的洞见和趋势,为组织或业务提供决策支持。
3. 过程:数据治理涉及到制定规章制度、指导文件,建立数据操作标准等多种复杂工作;数据分析则需要将数据清洗、预处理、建模、交互可视化等多个环节无缝衔接地完成。
4. 结果:通过数据治理可以使数据的价值清晰明确,易于跟踪审查并有更高的信任度;通过数据分析可以直观展示出趋势变化、发现问题和机会,并帮助用户进一步理解业务目标。
研究数据治理的目的在于有效规范组织中人员对数据的搜集、处理与提供,而研究数据分析则是让用户能够更好地应用这些信息。因此,在信息框架设计和管理过程中,数据治理和数据分析起到了不可或缺的作用。
六、数据挖掘与数据分析的区别是什么?
1.对计算机编程能力的要求不同
一个对编程、敲代码一窍不通的人完全可以成为一名优秀的数据分析师。数据分析很多时候用到的都是诸如Excel、SPSS、SAS等成型的分析工具,这些工具已经可以满足大多数数据分析的要求。
而数据挖掘则需要一定的编程基础。在做数据仓库组建、分析系统开发、挖掘算法设计等工作时,常常需要工作人员亲力而为地从ETL开始处理原始数据,因此对计算机水平有较高要求,并且更偏技术方向。目前从事数据挖掘相关工作的人大多都隶属于计算机系。
2. 侧重于解决的问题不同
数据分析主要侧重点在于通过观察数据来对历史数据进行统计学上的分析;而数据挖掘则是通过从数据中发现“知识规则”来对未来的某些可能性做出预测,更注重数据间的内在联系。
3. 对专业知识的要求不同
一名数据分析师,必须要对所从事的行业有较深入的了解,并且需要将数据与自身的业务紧密地结合起来。当然,除了需要了解本行业之外,还应当懂得统计学、营销学、社会学、心理学、经济学等方面的知识。假若能对数据挖掘等相关知识有所了解会对工作更有帮助。
而想要成为优秀的数据挖掘工程师,则需要拥有良好的统计学知识、数学能力、编程能力,熟悉数据库技术、数据挖掘的各种算法,并且要能够根据不同的业务需求,建立相应的数据模型并将模型与实际相结合,甚至需要对已有的模型和算法进行优化或者开发新的算法模型。
相比而言,数据挖掘在广度上稍逊于数据分析,但在深度上,数据挖掘则更胜一筹。
七、数据分析(运营分析方向)和数据分析(产品方向)的区别?
这两个岗位的差别主要有两处,分别是服务的对象不同,和对所需数据的分析和处理方式不同。
下文会详细说说这两处不同的具体表现形式,以及这两个岗位值得注意的相同点。
先说不同:
1.两个岗位所服务的对象是不一样的
数据分析(产品方向)岗位做所的工作,可能80%是围绕着产品展开的,20%是围绕着数据分析技术展开的,它本质上是一个产品工作,它所服务的对象更多是产品内部,是为产品功能服务的。
最典型的例子就是互联网公司常用的各种高大上酷炫的数据看板,以及目前沿海城市相对比较普及的智慧城市大脑,本质上也是一个数据分析(产品方向)的工作成果。
如下图展示的就是北京朝阳区的智慧城市大脑工作图,它的本质就是一个深度应用数据分析功能的,用于提升城市现代化治理能力和城市竞争力的新型基础设施产品。
数据分析(运营方向)岗位,做所的工作,可能80%是围绕着运营展开的,20%是围绕着数据分析展开的,它的本质还是一个运营工作。它关注的是各种企业运营活动产生的外部数据,更多是为公司的营销及市场前端策略服务的。
最典型的就是618、双十一的各种运营活动,究竟在什么时间段采取什么样的策略,怎么发放优惠券和拼单优惠组合,这些都是数据运营需要考虑的。
2.两个岗位对数据的思考和处理方式也是不一样的
我们以618大促作为例子:
数据分析(产品方向)岗位员工的工作强度和工作重点更多会在前期的筹备和设计阶段:
他们需要考虑,后台的数据看板需要展示哪些数据,例如日销售额、日成单量、日退单量、单日利润分析、投放引流数据等维度的数据是放在一级、二级还是三级界面展示?不同的部门数据看板的数据权限如何?
他们优先考虑规则,然后根据规则来制定数据分析的框架、数据来源和数据分析标准。
等大促真的开始之后,他们的工作反而告一段落,只需要保障自己的产品稳定运行,不会被暴起的流量冲垮崩溃就行。
数据分析(运营方向)岗位员工的工作强度则会在大促即将开始的时候加码,在大促开始之后来到顶峰:
他们不用考虑数据展示和数据来源抽取等技术性问题。他们考虑的会更加接地气,更加贴近客户和用户,更关心用户和客户的行为转化效果。
比如,大促前的拉新促活活动效果怎么样?目前发放的优惠券和满减政策,导致了多少主推商品被加入到购物车?网页内各项商品的点击量和收藏量如何?
活动开始后,数据分析(运营方向)岗位的员工还要紧密盯着每小时运营数据的变化,分析各项红包使用率、主播直播效果、热门商品排名、加购率和下单率等与销售额紧密相关的指标。通过随时调整销售策略,进行红包发放、价格调整、用户推送消息等方式提升业绩。
这里能够看到,不管是产品方向还是运营方向的岗位,想要做精,都离不开数据分析的技术功底做支撑。
这两个岗位都需要深入了解业务流程、熟练掌握数据分析工具的应用、有较高的数据敏感度,并能针对数据分析结果提供针对性的合理化建议(面向产品或面向营销)。
业务流程可以通过自学掌握;数据敏感度可以通过工作积累和刻意练习来培养;
但数据分析能力是需要通过系统性的学习才能有比较好的效果。
有志于往数据分析方向深入发展的同学,建议一方面熟悉掌握公司内部的业务流程,一方面给自己充充电,系统性的学习一下数据分析相关的知识。
这一块的专业教学,推荐知乎知学堂官方的数据分析实战课程,可以先用1毛钱的价格实际感受和体验一下课程的质量,觉得对自己工作有帮助有启发再正式购买:
3.总结
数据分析(产品方向)岗位的本质是打造产品,是为产品的功能服务的,且做的产品更多是围绕数据看板、数据平台等数据型的产品展开的。
数据分析(运营方向)岗位的本质是运营,是为市场和销售策略服务的。
再说说相同点:
这两个岗位虽然前期工作内容不同,往上晋升之路却殊途同归,都会是同一个岗位——数据分析师。
相较数据运营更加侧重于前端市场,数据产品更加侧重于后台研发,数据分析师是介于连接业务和技术之间的职位。
它得是运营人才里最懂产品的,产品人才里最懂运营的。
数据分析师的工作会涉及到大量的数据提取,数据清洗和数据多维度分析等工作,还需要根据数据的趋势预测给出产品、运营乃至公司战略上的策略建议。
从各方面评估,这都将是个高薪、高压、高挑战和高回报的岗位。
针对这样的岗位,自己的努力是不够的,需要通过体系化的学习“走捷径”。
同时,如果能在数据运营或数据产品岗位方向,就把数据分析的整体思维框架底子打好,做到熟练掌握Excel、SQL、Python、BI等数据分析工具,也可以在晋升时快人一步——这些内容在上述的知学堂官方数据分析实战课程里也有系统化的实战教学,这也是推荐学习的原因。
以上。
希望能给你带来帮助。
八、数据挖掘与数据分析区别
---数据挖掘与数据分析的区别
数据挖掘和数据分析是两个非常相关的概念,它们之间存在一些区别。首先,数据挖掘是从大量的数据中自动发现有用的信息和知识的过程,而数据分析则是对收集到的数据进行深入分析的过程。换句话说,数据挖掘是通过机器学习、统计学等方法从数据中提取有价值的信息,而数据分析则是使用统计分析等方法对数据进行研究和分析。 其次,数据挖掘通常是一个自动化的过程,而数据分析则需要更多的手动操作。在数据挖掘过程中,算法和模型会自动从数据中提取信息,而不需要人工干预。而在数据分析过程中,需要更多的手动操作,如数据清洗、数据可视化等。此外,数据分析还可以提供更深入的见解和结论,帮助人们更好地理解数据和业务情况。 最后,数据挖掘和数据分析的应用场景也不同。数据挖掘主要用于预测未来趋势和行为,如推荐系统、风险评估等。而数据分析则更多地用于了解过去的情况和趋势,如市场分析、财务分析等。 总的来说,数据挖掘和数据分析是两个不同的概念,它们之间存在一些区别。数据挖掘更多地关注自动化的过程和预测未来的趋势和行为,而数据分析则更多地关注深入分析和了解过去的情况和趋势。不同的应用场景也需要不同的方法和技术。 ---随着大数据时代的到来,数据挖掘和数据分析已经成为了企业不可或缺的一部分。对于企业来说,如何从海量的数据中获取有价值的信息,进而做出正确的决策成为了关键。本文介绍了数据挖掘和数据分析的区别,并分析了它们的应用场景。通过深入了解这两个概念,企业可以更好地利用数据来提高业务效率和竞争力。
数据挖掘和数据分析的技术方法
在数据挖掘和数据分析领域,有很多技术方法可以用来提取和整理数据中的信息。例如,常见的有聚类分析、关联规则学习、决策树算法、神经网络等。这些算法可以通过机器学习或统计学的方法自动发现数据的规律和特征,从而帮助人们更好地理解数据。 而在数据分析领域,常见的有描述性统计、推断统计、可视化等方法。这些方法可以帮助人们从数据中获取更深入的见解和结论,更好地了解业务的现状和趋势。同时,随着云计算、人工智能等技术的发展,数据挖掘和数据分析的技术方法也在不断更新和完善。 ---在选择使用哪种技术方法时,企业需要根据自身的需求和业务情况来决定。例如,对于推荐系统来说,关联规则学习是一个非常合适的方法;而对于市场分析来说,描述性统计和可视化可能更加适合。
九、数据与大数据的区别?
大数据区别于数据,主要于数据的多样性。据某研究报告指出的,数据的爆炸是三维的、立体的。所谓的三维,除了指数据量快速增大外,还指数据增长速度的加快,以及数据的多样性,即数据的来源、种类不断增加。
大数据区别于数据,主要于数据的多样性。据某研究报告指出的,数据的爆炸是三维的、立体的。所谓的三维,除了指数据量快速增大外,还指数据增长速度的加快,以及数据的多样性,即数据的来源、种类不断增加。
从数据到大数据,不仅是量的积累,更是质的飞跃。海量的、不同来源、不同形式、包含不同信息的数据可以容易地被整合、分析,原本孤立的数据变得互相联通。这使得人们通过数据分析,能发现小数据时代很难发现的新知识,创造新的价值。
其实通过数据来研究规律、发现规律,贯穿了人类社会发展的始终。人类科学发展史上的不少进步都和数据采集分析直接相关,例如现代医学流行病学的开端。从本质上说,许多科学活动都是数据挖掘,不是从预先设定好的理论或者原理出发,通过演绎来研究问题,而是从数据本身出发通过归纳来总结规律。
然而就现在社会环境而言当我们上网时、当我们携带配备GPS的智能手机时、当我们通过社交媒体或聊天应用程序与我们的朋友沟通时、以及我们在购物时,我们会生成数据。你可以说,我们所做的涉及数字交易的一切都会留下数字足迹,这几乎是我们生活的一切。而这些海量的数据需要新的技术进行整合,所以大数据就营运而生了。
从数据到大数据,不仅是量的积累,更是质的飞跃。海量的、不同来源、不同形式、包含不同信息的数据可以容易地被整合、分析,原本孤立的数据变得互相联通。这使得人们通过数据分析,能发现小数据时代很难发现的新知识,创造新的价值
大数据与数据之间 :在大量信息不断衍生的时代,大数据的使用将更好地优化社会发展模式。目前,大数据在促进学习、农业、空间科学等方面发挥了巨大的作用,甚至人工智能的发展也是以大数据的理论和实践为基础的。
十、数据治理与数据清洗区别?
大数据建设中会出现数据混乱、数据重复、数据缺失等问题,就需要对非标数据进行处理,涉及到数据治理与数据清洗,常常把数据治理和数据清洗搞混,可从以下方面进行区分:
一、概念不同
数据治理主要是宏观上对数据管理,由国家或行业制定制度,更具有稳定性。数据清洗是数据在指定数据规则对混乱数据进行清洗,规则由自己设定,数据清洗主要是微观上对数据的清洗、标准化的过程
二、处理方式
数据治理由各种行业制度,
三、角色方面
数据治理属于顶层设定、具有权威性,数据清洗由需要部门提出的,随意性比较强。