数据集体与数据仓库的区别?

一、数据集体与数据仓库的区别?

数据集体和数据仓库是有区别的,数据集体是指对于数据的内容方面,它的界定,而数据仓库是对于数据存储方面,它的界定。

二、数据仓库工程师是什么?

数据仓库工程师是一个专注于数据仓库设计和构建的职业人员。数据仓库是一个特殊的数据库,主要用于支持企业的决策制定和业务分析。数据仓库工程师的主要工作职责包括:

1. 数据仓库架构设计:设计和构建数据仓库的架构,确保数据仓库能够支持业务需求。

2. 数据仓库管理:确保数据仓库的可靠性、安全性、稳定性和性能。

3. ETL数据集成:设计和开发数据抽取(Extract)、转换(Transform)、加工(Load)(ETL)过程,使得数据能够从源系统中抽取并预处理到数据仓库中。

4. 数据挖掘和业务智能:使用数据挖掘和业务智能工具,从数据仓库中获取有价值的业务信息,帮助企业提高业务效率、优化业务决策。

5. 数据质量保证:记录、监控和维护数据仓库,确保数据质量符合标准和架构设计规范。

6. 数据仓库优化:诊断数据仓库的性能和瓶颈,采取必要的手段,提高数据仓库的性能。

数据仓库工程师需要具备扎实的数据库、数据仓库和数据挖掘技能,同时也需要具备业务分析能力和团队协作精神。越来越多的企业需要数据仓库工程师来帮助他们解决数据相关问题,因此该职位也愈发重要。

三、数据仓库与hdfs的关系?

Hive 是一个基于 Hadoop 文件系统之上的数据仓库架构,存储用hdfs,计算用mapreduce

四、数据仓库与数据模型的区别?

数据模型是负责读取数据,数据仓库负责存储数据,功能不同

五、数据集市与数据仓库有什么区别?

都是数据库里面的概念,本质上并没有什么不同。 从字义上看, “仓库”可以想像成一所大房子,高高的货架,合理的出入路线,是一种集中存储货物的地方,一般顾客是不来参观访问的; 而说到“集市”,就容易联想到空旷的场地,川流不息,大小商户摆出摊子,卖衣物的、卖烧饼及卖艺的,是让顾客来消费的地方。

具体来说,数据仓库仅仅是提供存储的,提供一种面向数据管理的服务,不面向最终分析用户;而数据集市是面向分析应用的,面向最终用户。

六、数据仓库工程师有前途吗?

当然有了,还得看你工作经验丰富不,大公司会设置这个岗位,小公司没有这个需求!

七、数据集市和数据仓库的区别与联系?

数据集市概念在实际工业届使用的比较少,一般用数据仓库,有时候会把他们等同。我一般是把数据集市看做是数据仓库的上层,比如围绕一些主题的数据,当做数据集市。

八、数据仓库十大主题模型?

数据仓库十大的主题模型如下

高层模型:考虑所有上层主题,主题之间的关系

中层模型:细化 上层主题 数据项

物理模型:基于性能,存储,平台特点,数据合并,分区设计

维度建模(Ralph Kimball 拉尔夫·金博尔)提出 (当前最主流的模型)

星型:所有维表直接连接到事实表

雪花型: 当有一个或多个维表没有直接连接到事实表上,而是通过其他维表连接到事实表上

九、数据仓库工程师发展与职业前景

数据仓库工程师发展与职业前景

数据仓库工程师是一种专门负责数据仓库设计、开发和维护的职业。随着数据技术的迅猛发展和企业对数据分析的需求不断增长,数据仓库工程师的职业前景越来越广阔。

数据仓库工程师技能要求

作为一名数据仓库工程师,掌握以下技能是至关重要的:

  • 数据库知识:熟练掌握SQL语言和关系数据库管理系统(如Oracle、SQL Server),能够熟练操作和管理数据库。
  • 数据建模:具备数据建模的能力,能够将业务需求转化为数据模型,并设计合理的数据结构。
  • ETL开发:熟悉ETL工具(如Informatica、DataStage),能够开发ETL流程,实现数据从源系统到数据仓库的抽取、转换和加载。
  • 数据质量管理:了解数据质量管理的基本概念和方法,能够进行数据质量评估和数据清洗。
  • 数据仓库架构:具备数据仓库的构建和管理经验,能够设计满足业务需求的数据仓库架构。
  • 数据分析:具备数据分析的能力,能够对数据进行分析和挖掘,提供有价值的洞察。

数据仓库工程师职业发展路径

数据仓库工程师职业发展路径通常包括以下几个阶段:

  1. 初级数据仓库工程师:在初级阶段,主要负责数据仓库的开发和维护工作,熟悉数据仓库领域的基本概念和技术。
  2. 高级数据仓库工程师:在此阶段,需要具备深入的数据仓库知识和丰富的项目经验,能够独立设计和实现复杂的数据仓库解决方案。
  3. 数据仓库架构师:成为数据仓库架构师需要具备全面的数据仓库设计和管理能力,负责整个数据仓库系统的规划和架构。
  4. 数据仓库顾问:担任数据仓库顾问的工作需要具备丰富的实战经验和深入的业务理解,能够为企业提供专业的数据仓库解决方案。

数据仓库工程师职业前景

数据仓库工程师职业前景非常广阔:

  • 数据清洗与分析:随着大数据时代的到来,企业对数据清洗和分析的需求不断增长,数据仓库工程师在这一领域将有更多的工作机会。
  • 数据仓库系统集成:随着企业信息化建设的推进,数据仓库工程师将发挥重要作用,负责数据仓库系统的集成、优化和升级。
  • 人工智能与机器学习:数据仓库工程师可以通过整合和分析大量数据,为人工智能和机器学习提供基础支持,参与到相关项目中。
  • 跨行业发展:数据仓库是各个行业都需要的技术,数据仓库工程师可以根据个人兴趣和发展方向选择不同行业的工作机会。

总之,数据仓库工程师是当今数据领域非常重要的职业之一,具有广阔的职业前景和发展空间。只要不断学习和提升专业能力,并与时俱进地掌握新技术,数据仓库工程师必将在未来的职业道路上获得更多机会和成就。

感谢您阅读本文,希望通过对数据仓库工程师职业发展与职业前景的介绍,对您有所帮助。

十、数据仓库的含义,数据仓库和数据库的区别?

一直想整理一下这块内容,既然是漫谈,就想起什么说什么吧。我一直是在互联网行业,就以互联网行业来说。先大概列一下互联网行业数据仓库、数据平台的用途:

整合公司所有业务数据,建立统一的数据中心;

提供各种报表,有给高层的,有给各个业务的;

为网站运营提供运营上的数据支持,就是通过数据,让运营及时了解网站和产品的运营效果;

为各个业务提供线上或线下的数据支持,成为公司统一的数据交换与提供平台;

分析用户行为数据,通过数据挖掘来降低投入成本,提高投入效果;比如广告定向精准投放、用户个性化推荐等;

开发数据产品,直接或间接为公司盈利;

建设开放数据平台,开放公司数据;

。。。。。。

上面列出的内容看上去和传统行业数据仓库用途差不多,并且都要求数据仓库/数据平台有很好的稳定性、可靠性;但在互联网行业,除了数据量大之外,越来越多的业务要求时效性,甚至很多是要求实时的 ,另外,互联网行业的业务变化非常快,不可能像传统行业一样,可以使用自顶向下的方法建立数据仓库,一劳永逸,它要求新的业务很快能融入数据仓库中来,老的下线的业务,能很方便的从现有的数据仓库中下线;

其实,互联网行业的数据仓库就是所谓的敏捷数据仓库,不但要求能快速的响应数据,也要求能快速的响应业务;

建设敏捷数据仓库,除了对架构技术上的要求之外,还有一个很重要的方面,就是数据建模,如果一上来就想着建立一套能兼容所有数据和业务的数据模型,那就又回到传统数据仓库的建设上了,很难满足对业务变化的快速响应。应对这种情况,一般是先将核心的持久化的业务进行深度建模(比如:基于网站日志建立的网站统计分析模型和用户浏览轨迹模型;基于公司核心用户数据建立的用户模型),其它的业务一般都采用维度+宽表的方式来建立数据模型。这块是后话。

整体架构下面的图是我们目前使用的数据平台架构图,其实大多公司应该都差不多:

逻辑上,一般都有数据采集层、数据存储与分析层、数据共享层、数据应用层。可能叫法有所不同,本质上的角色都大同小异。

我们从下往上看:

数据采集数据采集层的任务就是把数据从各种数据源中采集和存储到数据存储上,期间有可能会做一些简单的清洗。

数据源的种类比较多:

网站日志:

作为互联网行业,网站日志占的份额最大,网站日志存储在多台网站日志服务器上,

一般是在每台网站日志服务器上部署flume agent,实时的收集网站日志并存储到HDFS上;

业务数据库:

业务数据库的种类也是多种多样,有Mysql、Oracle、SqlServer等,这时候,我们迫切的需要一种能从各种数据库中将数据同步到HDFS上的工具,Sqoop是一种,但是Sqoop太过繁重,而且不管数据量大小,都需要启动MapReduce来执行,而且需要Hadoop集群的每台机器都能访问业务数据库;应对此场景,淘宝开源的DataX,是一个很好的解决方案(可参考文章 《异构数据源海量数据交换工具-Taobao DataX 下载和使用》),有资源的话,可以基于DataX之上做二次开发,就能非常好的解决,我们目前使用的DataHub也是。

当然,Flume通过配置与开发,也可以实时的从数据库中同步数据到HDFS

来自于Ftp/Http的数据源:

有可能一些合作伙伴提供的数据,需要通过Ftp/Http等定时获取,DataX也可以满足该需求;

其他数据源:

比如一些手工录入的数据,只需要提供一个接口或小程序,即可完成

数据存储与分析毋庸置疑,HDFS是大数据环境下数据仓库/数据平台最完美的数据存储解决方案。

离线数据分析与计算,也就是对实时性要求不高的部分,在我看来,Hive还是首当其冲的选择,丰富的数据类型、内置函数;压缩比非常高的ORC文件存储格式;非常方便的SQL支持,使得Hive在基于结构化数据上的统计分析远远比MapReduce要高效的多,一句SQL可以完成的需求,开发MR可能需要上百行代码;

当然,使用Hadoop框架自然而然也提供了MapReduce接口,如果真的很乐意开发Java,或者对SQL不熟,那么也可以使用MapReduce来做分析与计算;Spark是这两年非常火的,经过实践,它的性能的确比MapReduce要好很多,而且和Hive、Yarn结合的越来越好,因此,必须支持使用Spark和SparkSQL来做分析和计算。因为已经有Hadoop Yarn,使用Spark其实是非常容易的,不用单独部署Spark集群,关于Spark On Yarn的相关文章,可参考:《Spark On Yarn系列文章》

实时计算部分,后面单独说。

数据共享这里的数据共享,其实指的是前面数据分析与计算后的结果存放的地方,其实就是关系型数据库和NOSQL数据库;

前面使用Hive、MR、Spark、SparkSQL分析和计算的结果,还是在HDFS上,但大多业务和应用不可能直接从HDFS上获取数据,那么就需要一个数据共享的地方,使得各业务和产品能方便的获取数据; 和数据采集层到HDFS刚好相反,这里需要一个从HDFS将数据同步至其他目标数据源的工具,同样,DataX也可以满足。

另外,一些实时计算的结果数据可能由实时计算模块直接写入数据共享。

数据应用

业务产品

业务产品所使用的数据,已经存在于数据共享层,他们直接从数据共享层访问即可;

报表

同业务产品,报表所使用的数据,一般也是已经统计汇总好的,存放于数据共享层;

即席查询

即席查询的用户有很多,有可能是数据开发人员、网站和产品运营人员、数据分析人员、甚至是部门老大,他们都有即席查询数据的需求;

这种即席查询通常是现有的报表和数据共享层的数据并不能满足他们的需求,需要从数据存储层直接查询。

即席查询一般是通过SQL完成,最大的难度在于响应速度上,使用Hive有点慢,目前我的解决方案是SparkSQL,它的响应速度较Hive快很多,而且能很好的与Hive兼容。

当然,你也可以使用Impala,如果不在乎平台中再多一个框架的话。

OLAP

目前,很多的OLAP工具不能很好的支持从HDFS上直接获取数据,都是通过将需要的数据同步到关系型数据库中做OLAP,但如果数据量巨大的话,关系型数据库显然不行;

这时候,需要做相应的开发,从HDFS或者HBase中获取数据,完成OLAP的功能;

比如:根据用户在界面上选择的不定的维度和指标,通过开发接口,从HBase中获取数据来展示。

其它数据接口

这种接口有通用的,有定制的。比如:一个从Redis中获取用户属性的接口是通用的,所有的业务都可以调用这个接口来获取用户属性。

实时计算现在业务对数据仓库实时性的需求越来越多,比如:实时的了解网站的整体流量;实时的获取一个广告的曝光和点击;在海量数据下,依靠传统数据库和传统实现方法基本完成不了,需要的是一种分布式的、高吞吐量的、延时低的、高可靠的实时计算框架;Storm在这块是比较成熟了,但我选择Spark Streaming,原因很简单,不想多引入一个框架到平台中,另外,Spark Streaming比Storm延时性高那么一点点,那对于我们的需要可以忽略。

我们目前使用Spark Streaming实现了实时的网站流量统计、实时的广告效果统计两块功能。

做法也很简单,由Flume在前端日志服务器上收集网站日志和广告日志,实时的发送给Spark Streaming,由Spark Streaming完成统计,将数据存储至Redis,业务通过访问Redis实时获取。

任务调度与监控在数据仓库/数据平台中,有各种各样非常多的程序和任务,比如:数据采集任务、数据同步任务、数据分析任务等;

这些任务除了定时调度,还存在非常复杂的任务依赖关系,比如:数据分析任务必须等相应的数据采集任务完成后才能开始;数据同步任务需要等数据分析任务完成后才能开始; 这就需要一个非常完善的任务调度与监控系统,它作为数据仓库/数据平台的中枢,负责调度和监控所有任务的分配与运行。

前面有写过文章,《大数据平台中的任务调度与监控》,这里不再累赘。

总结在我看来架构并不是技术越多越新越好,而是在可以满足需求的情况下,越简单越稳定越好。目前在我们的数据平台中,开发更多的是关注业务,而不是技术,他们把业务和需求搞清楚了,基本上只需要做简单的SQL开发,然后配置到调度系统就可以了,如果任务异常,会收到告警。这样,可以使更多的资源专注于业务之上。