数据挖掘从入门到进阶,要看什么书

一、数据挖掘从入门到进阶,要看什么书

数据挖掘入门的书籍,中文的大体有这些:

Jiawei Han的《数据挖掘概念与技术》

Ian H. Witten / Eibe Frank的《数据挖掘 实用机器学习技术》

Tom Mitchell的《机器学习》

TOBY SEGARAN的《集体智慧编程》

Anand Rajaraman的《大数据》

Pang-Ning Tan的《数据挖掘导论》

Matthew A. Russell的《社交网站的数据挖掘与分析》

很多人的第一本数据挖掘书都是Jiawei Han的《数据挖掘概念与技术》,这本书也是我们组老板推荐的入门书(我个人觉得他之所以推荐是因为Han是他的老师)。

其实我个人来说并不是很推荐把这本书。这本书什么都讲了,甚至很多书少有涉及的一些点比如OLAP的方面都有涉猎。

但是其实这本书对于初学者不是那么友好的,给人一种教科书的感觉,如果你有大毅力读完这本书,也只能获得一些零碎的概念的认识,很难上手实际的项目。

二、在数据分析,挖掘方面,有哪些好书值得推荐

深入浅出数据分析 (豆瓣) 这书挺简单的,基本的内容都涉及了,说得也比较清楚,最后谈到了R是大加分。难易程度:非常易。

啤酒与尿布 (豆瓣) 通过案例来说事情,而且是最经典的例子。难易程度:非常易。

数据之美 (豆瓣) 一本介绍性的书籍,每章都解决一个具体的问题,甚至还有代码,对理解数据分析的应用领域和做法非常有帮助。难易程度:易。

数学之美 (豆瓣) 这本书非常棒啦,入门读起来很不错!

数据分析:

SciPy and NumPy (豆瓣) 这本书可以归类为数据分析书吧,因为numpy和scipy真的是非常强大啊。

Python for Data Analysis (豆瓣) 作者是Pandas这个包的作者,看过他在Scipy会议上的演讲,实例非常强!

Bad Data Handbook (豆瓣) 很好玩的书,作者的角度很不同。

适合入门的教程:

集体智慧编程 (豆瓣) 学习数据分析、数据挖掘、机器学习人员应该仔细阅读的第一本书。作者通过实际例子介绍了机器学习和数据挖掘中的算法,浅显易懂,还有可执行的Python代码。难易程度:中。

Machine Learning in Action (豆瓣) 用人话把复杂难懂的机器学习算法解释清楚了,其中有零星的数学公式,但是是以解释清楚为目的的。而且有Python代码,大赞!目前中科院的王斌老师(微博:王斌_ICTIR)已经翻译这本书了 机器学习实战 (豆瓣)。这本书本身质量就很高,王老师的翻译质量也很高。难易程度:中。我带的研究生入门必看数目之一!

Building Machine Learning Systems with Python (豆瓣) 虽然是英文的,但是由于写得很简单,比较理解,又有 Python 代码跟着,辅助理解。

数据挖掘导论 (豆瓣) 最近几年数据挖掘教材中比较好的一本书,被美国诸多大学的数据挖掘课作为教材,没有推荐Jiawei Han老师的那本书,因为个人觉得那本书对于初学者来说不太容易读懂。难易程度:中上。

Machine Learning for Hackers (豆瓣) 也是通过实例讲解机器学习算法,用R实现的,可以一边学习机器学习一边学习R。

三、浅析:数据挖掘从入门到进阶 要看什么书

搜一下:浅析:数据挖掘从入门到进阶 要看什么书