如何用 Python 中的 NLTK 对中文进行分析和处理

如何用 Python 中的 NLTK 对中文进行分析和处理

其重点在于中文分词和文本表达的形式。

中文和英文主要的不同之处是中文需要分词。因为nltk 的处理粒度一般是词,所以必须要先对文本进行分词然后再用nltk 来处理(不需要用nltk 来做分词,直接用分词包就可以了。严重推荐结巴分词,非常好用)。

中文分词之后,文本就是一个由每个词组成的长数组:[word1, word2, word3…… wordn]。之后就可以使用nltk 里面的各种方法来处理这个文本了。比如用FreqDist 统计文本词频,用bigrams 把文本变成双词组的形式:[(word1, word2), (word2, word3), (word3, word4)……(wordn-1, wordn)]。

再之后就可以用这些来计算文本词语的信息熵、互信息等。

再之后可以用这些来选择机器学习的特征,构建分类器,对文本进行分类(商品评论是由多个独立评论组成的多维数组,网上有很多情感分类的实现例子用的就是nltk 中的商品评论语料库,不过是英文的。但整个思想是可以一致的)。

另外还有一个困扰很多人的Python 中文编码问题。多次失败后我总结出一些经验。

Python 解决中文编码问题基本可以用以下逻辑:

utf8(输入) ——> unicode(处理) ——> (输出)utf8

Python 里面处理的字符都是都是unicode 编码,因此解决编码问题的方法是把输入的文本(无论是什么编码)解码为(decode)unicode编码,然后输出时再编码(encode)成所需编码。

由于处理的一般为txt 文档,所以最简单的方法,是把txt 文档另存为utf-8 编码,然后使用Python 处理的时候解码为unicode(sometexts.decode('utf8')),输出结果回txt 的时候再编码成utf8(直接用str() 函数就可以了)。

如何用OpenCV训练自己的分类器

最近要做一个性别识别的项目,在人脸检测与五官定位上我采用OPENCV的haartraining进行定位,这里介绍下这两天我学习的如何用opencv训练自己的分类器。在这两天的学习里,我遇到了不少问题,不过我遇到了几个好心的大侠帮我解决了不少问题,特别是无忌,在这里我再次感谢他的帮助。 一、简介

目标检测方法最初由Paul Viola [Viola01]提出,并由Rainer Lienhart [Lienhart02]对这一方法进行了改善。该方法的基本步骤为: 首先,利用样本(大约几百幅样本图片)的 harr 特征进行分类器训练,得到一个级联的boosted分类器。分类器中的级联是指最终的分类器是由几个简单分类器级联组成。在图像检测中,被检窗口依次通过每一级分类器, 这样在前面几层的检测中大部分的候选区域就被排除了,全部通过每一级分类器检测的区域即为目标区域。 分类器训练完以后,就可以应用于输入图像中的感兴趣区域的检测。检测到目标区域分类器输出为1,否则输出为0。为了检测整副图像,可以在图像中移动搜索窗口,检测每一个位置来确定可能的目标。 为了搜索不同大小的目标物体,分类器被设计为可以进行尺寸改变,这样比改变待检图像的尺寸大小更为有效。所以,为了在图像中检测未知大小的目标物体,扫描程序通常需要用不同比例大小的搜索窗口对图片进行几次扫描。

目前支持这种分类器的boosting技术有四种: Discrete Adaboost, Real Adaboost, Gentle Adaboost and Logitboost。boosted 即指级联分类器的每一层都可以从中选取一个boosting算法(权重投票),并利用基础分类器的自我训练得到。

根据上面的分析,目标检测分为三个步骤: 1、 样本的创建

2、 训练分类器

3、 利用训练好的分类器进行目标检测。

二、样本创建

训练样本分为正例样本和反例样本,其中正例样本是指待检目标样本,反例样本指其它任意图片。

负样本

负样本可以来自于任意的图片,但这些图片不能包含目标特征。负样本由背景描述文件来描述。背景描述文件是一个文本文件,每一行包含了一个负样本图片的文件名(基于描述文件的相对路径)。该文件创建方法如下:

采用Dos命令生成样本描述文件。具体方法是在Dos下的进入你的图片目录,比如我的图片放在D:\face\posdata下,则:

按Ctrl+R打开Windows运行程序,输入cmd打开DOS命令窗口,输入d:回车,再输入cd D:\face\negdata进入图片路径,再次输入dir /b > negdata.dat,则会图片路径下生成一个negdata.dat文件,打开该文件将最后一行的negdata.dat删除,这样就生成了负样本描述文件。

对于正样本,通常的做法是先把所有正样本裁切好,并对尺寸做规整(即缩放至指定大小),如上图所示:

由于HaarTraining训练时输入的正样本是vec文件,所以需要使用OpenCV自带的CreateSamples程序(在你所按照的opencv\bin下,如果没有需要编译opencv\apps\HaarTraining\make下的.dsw文件,注意要编译release版的)将准备好的正样本转换为vec文件。转换的步骤如下:

1) 制作一个正样本描述文件,用于描述正样本文件名(包括绝对路径或相对路径),正样本数目以及各正样本在图片

中的位置和大小。典型的正样本描述文件如下: posdata/1(10).bmp 1 1 1 23 23 posdata/1(11).bmp 1 1 1 23 23 posdata肠唬斑舅职矫办蝎暴莽/1(12).bmp 1 1 1 23 23

不过你可以把描述文件放在你的posdata路径(即正样本路径)下,这样你就不需要加前面的相对路径了。同样它的生成方式可以用负样本描述文件的生成方法,最后用txt的替换工具将“bmp”全部替换成“bmp 1 1 1 23 23 ”就可以了,如果你的样本图片多,用txt替换会导致程序未响应,你可以将内容拷到word下替换,然后再拷回来。bmp后面那五个数字分别表示图片个数,目标的起始位置及其宽高。这样就生成了正样本描述文件posdata.dat。 2) 运行CreateSamples程序。如果直接在VC环境下运行,可以在Project\Settings\Debug属性页的Program arguments栏设置运行参数。下面是一个运行参数示例:

-info D:\face\posdata\posdata.dat -vec D:\face\pos.vec -num 50 -w 20 -h 20

表示有50个样本,样本宽20,高20,正样本描述文件为posdata.dat,结果输出到pos.vec。 或者在dos下输入:

D:\Program Files\OpenCV\bin\createsamples.exe -info posdata\posdata.dat -vec data\pos.vec -num 50 -w 20 -h 20

运行完了会d:\face\data下生成一个*.vec的文件。该文件包含正样本数目,宽高以及所有样本图像数据。

Createsamples程序的命令行参数: 命令行参数:

-vec <vec_file_name> 训练好的正样本的输出文件名。 -img<image_file_name>

源目标图片(例如:一个公司图标) -bg<background_file_name> 背景描述文件。

-num<number_of_samples>

要产生的正样本的数量,和正样本图片数目相同。

-bgcolor<background_color> 背景色(假定当前图片为灰度图)。背景色制定了透明色。对于压缩图片,颜色方差量由bgthresh参数来指定。则在bgcolor-bgthresh和bgcolor+bgthresh中间的像素被认为是透明的。 -bgthresh<background_color_threshold> -inv

如果指定,颜色会反色 -randinv

如果指定,颜色会任意反色

-maxidev<max_intensity_deviation> 背景色最大的偏离度。

-maxangel<max_x_rotation_angle> -maxangle<max_y_rotation_angle>, -maxzangle<max_x_rotation_angle> 最大旋转角度,以弧度为单位。 -show

如果指定,每个样本会被显示出来,按下esc会关闭这一开关,即不显示样本图片,而创建过程继续。这是个有用的debug选项。 -w<sample_width>

输出样本的宽度(以像素为单位) -h《sample_height》

输出样本的高度,以像素为单位。

到此第一步样本训练就完成了。恭喜你,你已经学会训练分类器的五成功力了,我自己学这个的时候花了我一天的时间,估计你几分钟就学会了吧。 三、训练分类器

样本创建之后,接下来要训练分类器,这个过程是由haartraining程序来实现的。该程序源码由OpenCV自带,且可执行程序在OpenCV安装目录的bin目录下。 Haartraining的命令行参数如下: -data<dir_name>

存放训练好的分类器的路径名。 -vec<vec_file_name>

正样本文件名(由trainingssamples程序或者由其他的方法创建的) -bg<background_file_name>