学ai需要什么基础学ai需要什么基础知识

学ai需要什么基础学ai需要什么基础知识

1.数学基础

数学是AI开发不可或缺的基础。AI开发涉及到很多数学知识,比如高等数学、线性代数、概率论和微积分等。在学习AI开发之前,建议先好好学习一些数学基础,这样才能更好地理解和掌握AI算法。

2.编程能力

编程是AI开发不可或缺的技能之一。学习编程需要先选择一门编程语言进行学习,常见的编程语言有Python、Java、C++等。建议选择Python作为初学者的第一门编程语言,因为Python语言简单易学,语法简洁清晰,更加适合入门。

3.机器学习基础

机器学习是AI开发中较为重要的一个领域。机器学习是让计算机通过学习数据来自动改进算法的过程。在学习机器学习之前,需要掌握一些机器学习基础知识,比如决策树、支持向量机、朴素贝叶斯等基本算法。

4.深度学习基础

深度学习是机器学习中的一种技术,也是AI开发中的重要领域之一,它的目的是通过多层神经网络来学习并理解数据。在学习深度学习之前,建议先学习机器学习的基础知识,进一步深入学习深度学习。

5.计算机基础知识

计算机基础知识也是学习AI开发的基础之一。需要掌握一些计算机基础知识,比如操作系统、计算机网络、数据结构和算法等。这些基础知识可以帮助我们更好地理解和掌握AI开发的技能。

学习AI需要以下基础:

1.编程语言:Python是AI领域最常用的编程语言之一,因此了解Python编程语言的基本语法和概念是必要的。

2.数学基础:AI涉及许多数学知识,如线性代数、微积分、概率论和统计学等。因此,掌握这些数学基础知识将有助于理解AI算法的原理和实现。

3.数据结构和算法:AI算法通常涉及到大量的数据处理和计算,因此熟悉基本的数据结构(如数组、链表、树、图等)和算法(如排序、搜索、动态规划等)是非常重要的。

4.机器学习和深度学习:这是AI的核心技术之一。了解机器学习和深度学习的基本概念、算法和应用场景将有助于深入理解AI技术的本质。

5.计算机视觉和自然语言处理:这些是AI领域的两个重要分支。学习计算机视觉和自然语言处理的基本概念和技术将有助于开发基于图像和语音识别的应用。

学习人工智能AI需要下列最基础的知识:

1.需要数学基础:高等数学,线性代数,概率论数理统计和随机过程,离散数学,数值分析。

2.需要算法的积累:人工神经网络,支持向量机,遗传算法等等算法;当然还有各个领域需要的算法,比如要让机器人自己在位置环境导航和建图就需要研究SLAM;总之算法很多需要时间的积累。

3.需要掌握至少一门编程语言,毕竟算法的实现还是要编程的;如果深入到硬件的话,一些电类基础课必不可少。

人工智能一般要到研究生才会去学,本科也就是蜻蜓点水看看而已,毕竟需要的基础课过于庞大。

1. 数学基础:线性代数、概率论、统计学、微积分以及优化方法等。

2. 编程基础:熟练掌握一种或多种编程语言,如Python、Java或C++等,并知道如何使用相关工具和框架,例如TensorFlow、Keras和PyTorch等。

3. 计算机科学基础:了解计算机体系结构、算法和数据结构等基本概念。

4. 机器学习基础:了解机器学习的基本概念,包括监督学习、无监督学习和强化学习等,并了解不同类型的模型和算法。

5. 数据处理基础:了解数据的预处理、清洗、特征提取和转换等技术,并灵活运用。

6. 领域知识:熟悉相关领域的知识和背景,了解该领域的问题和需要解决的挑战。

如果是人工智能AI的话,有以下基础会更好一些。

1、基础数学知识:线性代数、概率论、统计学、图论;

2、基础计算机知识:操作系统、linux、网络、编译原理、数据结构、数据库;

3、编程语言基础:C/C++、Python、Java;

4、人工智能基础知识:ID3、C4.5、逻辑回归、SVM、分类器、等算法的特性、性质、和其他算法对比的区别等内容;

5、工具基础知识:opencv、matlab、caffe等。

想了解机器学习,需要知道哪些基础算法?

支持向量机(Support Vector Machine)

SVM是二元分类算法。给定一组2种类型的N维的地方点,SVM产生一个(N - 1)维超平面到这些点分成2组。假设你有2种类型的点,且它们是线性可分的。 SVM将找到一条直线将这些点分成2种类型,并且这条直线会尽可能地远离所有的点。

朴素贝叶斯分类(Naive Bayesian classification)

朴素贝叶斯分类是一种十分简单的分类算法,方程如下图所示——P(A|B)是后验概率,P(B|A)是可能性,P(A)是类先验概率,而P(B)是预测先验概率。朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。

决策树(Decision Trees)

决策树是一个决策支持工具,它使用树形图或决策模型以及序列可能性。包括各种偶然事件的后果、资源成本、功效。从商务决策的角度来看,大部分情况下,决策树是一个人为了评估做出正确决定的概率需要问的是/否问题的最小数值。它能让你以一个结构化和系统化的方式来处理这个问题,然后得出一个合乎逻辑的结论。

KNN算法

 KNN算法是通过测量不同特征值之间的距离进行分类。它的的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。K通常是不大于20的整数。KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。

聚类算法

聚类算法比较多,最有名的莫过于kmean算法了, K-means算法是聚类分析中使用最广泛的算法之一。它把n个对象根据他们的属性分为k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。

BP神经网络算法

BP(Back Propagation)神经网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用梯度下降法,通过反向传播来不断调整网络的权值和阈值

RBF神经网络算法

RBF网络是一个三层的网络,出了输入输出层之外仅有一个隐层。隐层中的转换函数是局部响应的高斯函数,而其他前向型网络,转换函数一般都是全局响应函数。由于这样的不同,要实现同样的功能,RBF需要更多的神经元,这就是rbf网络不能取代标准前向型网络的原因。但是RBF的训练时间更短。它对函数的逼近是最优的,可以以任意精度逼近任意连续函数。

想要入门的话建议看一下Peter Harrington写的《机器学习实战 [Machine learning in action]》按照书中的例子用python实现以下就清楚了