特征向量是数学吗?

一、特征向量是数学吗?

是高一数学内容

数学上,线性变换的特征向量(本征向量)是一个非简并的向量,其方向在该变换下不变。该向量在此变换下缩放的比例称为其特征值(本征值)。一个线性变换通常可以由其特征值和特征向量完全描述。特征空间是相同特征值的特征向量的集合。"特征"一词来自德语的eigen。1904年希尔伯特首先在这个意义下使用了这个词,更早亥尔姆霍尔兹也在相关意义下使用过该词。eigen一词可翻译为"自身的"、"特定于……的"、"有特征的"、或者"个体的"。这显示了特征值对于定义特定的线性变换有多重要。

二、计算机二分类与多类别分类的原理?

分类任务一直都是机器学习的基础任务,已经被广泛应用在新闻分类、情感分类、主题分类、图片分类、视频分类、广告过滤,内容审核,评论分析,问题对答等NLP、数据挖掘、推荐系统、广告系统等领域。

机器学习分类通过训练集进行学习,建立一个从输入空间 X 到输出空间 Y(离散值)的映射。按输出类别(标签)不同,可以分为二分类(Binary Classification)、多分类(Multi-Class Classification)、多标签分类(Multi-Label Classification)。